REPORT NO. DOT-TSC-FHWA-72-1

Reference

MANUAL FOR HIGHWAY NOISE PREDICTION (APPENDIX B)

J. E. WESLER
TRANSPORTATION SYSTEMS CENTER
55 BROADWAY
CAMBRIDGE, MA. 02142

MARCH 1972 TECHNICAL REPORT

Availability is Unlimited. Decument may be Released To the National Technical Information Service, Springfield, Virginia 22151, for Sale to the Public.

Prepared for:

DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION WASHINGTON, D.C. 20590

The contents of this report reflect the views of the Transportation Systems Center which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

1. Report No. DOT-TSC-FHWA-72-1	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle MANUAL FOR HIGHWAY	5. Report Date March 1972	
APPENDIX B	6. Performing Organization Code	
J.E. Wesler		8. Performing Organization Report No.
Performing Organization Name and Address Department of Transportation Transportation Systems Center 55 Broadway Cambridge, MA 02142		10. Work Unit Ng. R - 2519
		11. Contract or Grant No. OS-207
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Department of Transportation Federal Highway Administration		Technical Report
Washington, D.C.		14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

The basic manual, published as the first volume of this report, is intended for use as a tool in predicting noise levels which will be generated by freely-flowing vehicle traffic along a highway of known characteristics. The first volume explains the basis for the computerized prediction model, used for highway noise level prediction and contains the user's manual for the computer program. This volume contains the programmer's manual for the computer program, and the program listing in FORTRAN IV.

17. Key Words •Traffic noise prediction •Highway noise simulation, •Traffic noise levels		18. Distribution Statement		
		Availability is Unlimited. Document may be Released To the National Technical Information Service, Springfield, Virginia 22151, for Sale to the Public.		
19. Security Classif. (of this report) Unclassified	1	assified	21. No. of Pages 80	22. Price

TABLE OF CONTENTS

		Page
PREFACE		ix
DETAILS AND LISTING OF COMPUTER PROGRAM		1
Introduction		1
Main Program		1 4
List of Variables for Main ProgramSubroutine INPUT		
List of Variables for Subroutine INPUT		
Subroutine GEOMRY		
Detailed Flow Diagrams		13
Preliminary Computations		13
Preliminary Selection of Diffracting Barriers		16
Preliminary Selection of Absorbing Ground Strips	3	16 16
Diffraction of Direct Ray	• • • • • •	
Ground Absorption		
Calculation of Potential Reflections		
Consideration of Diffraction Before Reflection.		18
Consideration of Diffraction After Reflection		18
Final Computations and Summation of Sound		
Intensities	• • • • • •	32
List of Variables for Subroutine GEOMRY	• • • • • •	32
Description of Other Subroutines and Functions.	• • • • • •	. 30
Subroutine FILES		38
Subroutine INTER (NR, IQ)		
Function AMAG (X1V, X2V)		. 38
Function ANGLE (X1V, X2V, X3V)		, 38
Function BARFAC(KF, DELP)		. 38
Subroutine BLOCN (X1V, X2V, X3V, X4V,		
X5V, X6V, LOC)		. 39
Function DEL (X1V, X2V, X3V, X4V, HDIFF, D	NIJ	, 40
Subroutine ENDPT (X1V, X2V, X3V, X4V, X5V, KTRIG, IERR)	AUV,	. 40
Function HEIGHT (X1V, X2V, X3V, X4V)		
Function IEPS (XIV, X2V, X3V, X4V, DEL1)		. 40
Subroutine IMAGE (X1V, X2V, X3V, X4V)		. 40
Subrouting INTCPT (X1V X2V X3V X4V X5V	`)	. 41
Function KCUT (X1V, X2V, X3V, X4V) Function KPOS (X1V, X2V, X3V)		. 41
Function KPOS (X1V, X2V, X3V)	• • • • •	. 41
Subroutine MIDP (XIV, XZV, X3V)		. 41
Subroutine NRPT (X1V, X2V, X3V, X4V, DIST.		. 41
Subroutine NR1 (X1V, X2V, X3V, X4V, DIST, X5V, DN1		. 41
Subroutine REPLCE (X1V, X2V)		
Subroutine SECTN (X1V, X2V, X3V, X4V, X5V,		
X6V, X7V)		. 41

TABLE OF CONTENTS (CONT.)

	Page
Subroutine TRI (X1V, X2V, X3V, X4V, X5V,	
KTRI)Function ZCOR (X1V, X2V, X3V)	42
Subroutine MOVE (X1V, X2V, X3V, DELTA, IERR) Function TAN (X)	42
Function ACOS (X)	42
Constraints on Input Data	42

LIST OF ILLUSTRATIONS

Figure		Page
B-1	Subdivision of Road Section	14
B-2	Further Subdivision of Road Section	15
B-3	Notation for Subroutine BLOCN	39

PREFACE

Appendix B to the basic report, Manual for Highway Noise Prediction, contains the programmer's manual and computer listing for the highway noise prediction model. This manual and listing are bound separately from the basic report, for convenience, and to permit a smaller overall size for the basic user's manual which forms the larger portion of the basic report.

APPENDIX B DETAILS AND LISTING OF COMPUTER PROGRAM

INTRODUCTION

The computer program, known as the Traffic Noise Prediction Model MOD 2, is designed to run on the IBM 7094 computer, which is currently installed at TSC. The program is written in FORTRAN IV language, and is designed to run in the batch mode. Because of the modular organization of the program, only a modest level of effort should be required to modify it for an interactive mode of operation. This modification is currently underway at TSC. As formatted in this manual, however, inputs are provided through punched cards, and outputs are provided through a line printer. This mode of operation is felt to provide maximum flexibility for other groups who may adapt this program for their own use.

The organizational scheme of the program is shown in the following flow diagram. The main blocks of code are contained in the main program, and in the subroutines INPUT and GEOMRY. The subroutine INPUT reads input data provided on cards, stores this information in core memory, and outputs it on the user's line printer. The subroutine GEOMRY provides the bulk of the calculations performed by the computer program, using a number of additional subroutines and functions in the process. Additional subroutines called by the main program are FILES, which assigns device numbers to the various I/O devices used by the program, and INTER, which computes reference intensities for the various vehicle groups specified by the user.

The main program and the subroutines INPUT and GEOMRY are discussed individually in some detail in the remainder of this section, and the remaining subroutines and functions are described very briefly. Listings for the entire computer program and details on program usage are also provided.

The following definitions are used throughout the remainder of this manual. A "road" or "roadway" is defined as a set of connected straight "road sections" for which the traffic conditions are uniform. That is, the number of vehicle groups and the concentration and mean vehicle speed associated with each group are the same for all sections of a given road. Barriers are treated similarly. Thus, a "barrier" is defined as a set of connected straight "barrier sections" for which the absorptive/reflective properties are the same.

MAIN PROGRAM

The primary function of the main program is to control the flow of operations. Various subroutines are called upon to perform the bulk of the input-output operations and the analysis. In addition, certain variables are initialized in the main program and the final computation of energy mean levels is made.

ORGANIZATIONAL SCHEME OF COMPUTER PROGRAM

A flow diagram of the main program is given below. This diagram is self-explanatory. Whenever possible, statement numbers are shown so that reference may be made to the corresponding block of code in the program listing.

LIST OF VARIABLES FOR MAIN PROGRAM

Variables appearing in the main program are listed below. Array variables are not generally identified as such; the dimensionality of the variables can be determined from the program listing. The variables XR1 and XR2 listed below are vector quantities which indicate the coordinates of road end points. The first element of the vector indicates the x-coordinate, the second element the y-coordinate, and the third element the z-coordinate. This format is used widely throughout the remainder of the entire computer program to denote coordinates.

- CQ Factor accounting for standard deviation of reference level
 - T Index
- IBAR Barrier number
- TERR Error index
- IGRA Ground strip number
 - II Index
 - IQ Index
- ISEG Barrier section number
 - J Index
 - M Roadway number
 - N Road section number
 - NB Number of barriers
 - NF Number of frequency bands
 - NG Number of absorptive ground strips
- NLIM Number of sections defining a roadway
 - NO Number of vehicle types
 - NQC Number of groups within one vehicle type
 - NQS Vector notation for number of vehicle groups

NR Number of roadways

NRC Number of receivers

NRSEC Number of sections for one roadway

NRSM1 Number of sections for one roadway

RDIN Vector notation for initialization parameters

RX x-coordinate of roadway point

RY y-coordinate of roadway point

RZ z-coordinate of roadway point

SIG Standard deviation of reference level

SIGL Standard deviation of A-weighted sound intensity

VEXPH Vehicles per foot

XKA Cumulant of the A-weighted sound intensity

XLA A-weighted overall intensity and level

XKAP Cumulant of the intensity normalized with the energy mean

XLE A-weighted intensity and level in frequency bands

XL10 A-weighted SPL exceeded 10% of the time

XL50 A-weighted SPL exceeded 50% of the time

XL90 A-weighted SPL exceeded 90% of the time

XLNP Noise Pollution Level

XMPH Vehicle speed in mph

XR1 Road section initial point

XR2 Road section end point

XRC x-coordinate of receiver

YRC y-coordinate of receiver

ZRC z-coordinate of receiver

SUBROUTINE INPUT

This subroutine reads the input data provided by the user on punched cards, stores these data in core memory in a format suitable for use in the remainder of the computer program, and prints the

Subroutine Input


```
For IGO = 3:
               Set the number of barriers NB equal to Il
                                                               Branch to 5
                                 Is NB = 0?
                                       N
                 For all barriers:
                        For all barrier sections:
                 READ coordinates of endpoints. Count the number NSEC of barrier sections
                                                  WRITE error
                               Is NSEC = 0?
                                                                     EXIT
                                                    message
                                       N
                          Store barrier sections
                                   35
For IGO = 4:
                                   36 €
                     Set the number of ground strips $\operatorname{NG}$ equal to Il
                                 Is NG = 0?
           For all ground strips:
                  READ coordinates of the center line,
                     the width and the type of ground
                            cover and store all
                                   37
For IGO = 5:
                                   40
              Set the number of receivers NRC equal to Il
                For all receivers:
                   READ receiver coordinates.
                    receiver height as specified by
                      the initialization parameters
```

50 € For IGO = 6: For all roadways: For all groups of all vehicle types: TYPE type number, group number, vehicles per hour VEXPH, speed XMPH TYPE coordinates of initial road point For all road sections: TYPE coordinates of endpoint 65 For all barriers: TYPE barrier type, coordinate of initial barrier point For all barrier sections: TYPE coordinates of endpoint For all ground strips: TYPE ground cover type, coordinates of center line endpoints, width of ground strip 80 For all receivers: TYPE receiver number, receiver coordinates 951 RETURN

input and output data so that a permanent record is created.

The computer program is organized in such a way that the user need not redefine the entire situation each time a new card is analyzed. Instead, it is necessary to specify only those aspects of the problem that are different from the previous case. Accordingly, each block of input data is preceded by a control card that indicates the type of data (e.g., barrier specifications) and the number of items (e.g., number of barriers) to follow. After a special control character has signified the end of data input, the entire set of input variables is typed out and control returns to the main program.

A flow diagram of this subroutine is given below, followed by a list of variables.

LIST OF VARIABLES FOR SUBROUTINE INPUT

ALPHA Alphanumeric information

BGS Width of absorptive ground strip

BX x-coordinate of barrier point

BY y-coordinate of barrier point

BZ z-coordinate of barrier point

I Index

IBLAST Barrier type

II Number of items in data block

I2 Dummy variable

IA Alphanumeric "A"

IDN Index for program initialization parameter

IDUM Index for type of absorptive ground cover

IG Alphanumeric "G"

IGO Index for data blocks

ILAST Alphanumeric indicator for last section

IR Alphanumeric "R"

IT Alphanumeric "T"

ITY Vehicle type

J Index

K Index

LAST Alphanumeric "L"

NB Number of barriers

NBSM1 Number of sections for one barrier

NG Number of absorptive ground strips

NO Number of vehicle types

NQC Number of groups within one vehicle type

NQS Vector notation for number of vehicle groups per vehicle type

NR Number of roadways

NRC Number of receivers

NRSM1 Number of sections for one roadway

NSEC Section number

NSM1 NSEC-1

NTEMP Temporary variable

RDIN Vector notation for initialization parameters

RX x-coordinate of roadway point

RY y-coordinate of roadway point

RZ z-coordinate of roadway point

VALUE Initialization parameter

VEH Vehicles per hour

VEXPH Vehicles per foot, vehicles per hour

VTEMP Vehicle speed

X Coordinate

XG1 X-coordinate for end point of ground strip center line

XMH Speed in mph for one group of vehicles

XMPH Vector notation for vehicle speed

XNIGHT Height adjustment for receiver coordinate

XRC X-coordinate of receiver

XT X-coordinate for end point of road section

XXG1 X-coordinate of point on ground strip center line

Y Coordinate

YG1 Y-coordinate for end point of ground strip center line

YRC Y-coordinate of receiver

YT Y-coordinate for end point of road section

YYG1 Y-coordinate of point on ground strip center line

Z Coordinate

ZG1 Z-coordinate for end point of ground strip center line

ZRC Z-coordinate of receiver

ZT Z-coordinate for end point of road section

ZZG1 Z-coordinate of point on ground strip center line

SUBROUTINE GEOMRY

The bulk of the computational effort of this subroutine is devoted to finding segments of a straight road section for which sound from all points along the segment reaching a particular receiver is nearly equally attenuated by barrier diffraction or ground absorption or is equally amplified by reflections.

Because of the complexity of this subroutine, a detailed description with a series of flow diagrams is presented. Before reviewing these diagrams, however, the reader should become familiarized with the basic philosophy of the computational scheme outlined below.

As shown in the following diagram giving an overview of subroutine GEOMRY, checks are performed on two different levels:
first on all the barriers, then on all the absorptive ground
strips, and finally on all the reflectors. On the lower level,
preliminary checks are made mostly in the two dimensions of the
x-y plane to determine whether a barrier, a ground strip, or a
reflector can be at all effective for the road segment and the
receiver under consideration. During these checks a smaller
number of barriers, ground strips, and reflectors are stored and
are investigated more closely at the higher level.

AN OVERVIEW OF SUBROUTINE GEOMRY

At this higher level, break points between road segments possibly affected and unaffected by barriers, ground strips, or reflectors are determined from checks first made in the two dimensions of the x-y plane. If the road segment between the initial point and the break point is unaffected, then no further checks in three dimensions are made on the actual effect of the remaining road segment, but the break point is considered as the new end point of the road segment. The remaining road segment is investigated after the calculations for the first road segment are finished.

If the road segment between the initial point and the break point is possibly affected by a barrier, a ground strip, or a reflector, the break point is taken as a preliminary end point until the subsequent analysis in three dimension shows whether there is an actual effect that makes it necessary to keep the break point as an end point or whether there is no effect and the break point can be dropped.

Since all the checks are performed first for diffraction, then for absorptive ground strips, and finally for reflections, the initial road section may be reduced several times by each group of elements. The procedure of subdividing a road section is diagrammed in Figure B-1. The final reduction in each group is stored in terms of end points XR2D for barriers, XR2G for absorptive ground strips, and XR2 for reflectors. By this means, duplicate calculations are avoided. After the noise from the road segment XR10, XR2 is analyzed, the computation continues for possible reflections from the road segment XR2, XR2G is completely analyzed, the computation continues with consideration of ground absorption and reflections for the road segment XR2G, XR2D. The designation of end points during the course of this analysis is illustrated in Figure B-2. Finally, the computation continues with the entire problem of barrier diffraction, ground absorption, and reflection for the remaining road segment XR2D, XR20 until the noise from the entire road section XR10, XR20 has been analyzed. At that point, program control is returned to the main program.

DETAILED FLOW DIAGRAMS

The flow diagrams presented at the end of this section show the operations and important branch points of the computations that are indicated in the overview diagram presented above. Again, statement numbers are shown so that reference may be made to the corresponding block of code in the program listing. The following comments are provided to supplement the information contained in the flow diagrams.

PRELIMINARY COMPUTATIONS

The main computation shown in the first flow chart concerns the distance between the near point XNPT on the source line and

CONSTANT ATTENUATION BY GROUND ABSORPTION

UNIFORM CONTRIBUTION OF REFLECTED RAYS

Figure B-1. Subdivision of Road Section

Figure B-2. Further Subdivision of Road Section

the receiver XRC. This distance enters into the formula for the mean energy level and is a quantity that is characteristic of the entire road section.

PRELIMINARY SELECTION OF DIFFRACTING BARRIERS

The computations are made in the two dimensions of the x-y plane, and no checks are made for the height of barriers. A barrier whose top line crosses the roadway in a projection on the x-y plane is considered illegal and causes the program to abort. Thus, even a barrier crossing underneath an elevated roadway is illegal. A barrier stored is not necessarily high enough actually to diffract sound rays travelling from the road section to the receiver. The storage of the relative location (see SUBROUTINE BLOCN) saves considerable computation for very high barriers that shield the entire road section against the receiver.

PRELIMINARY SELECTION OF ABSORBING GROUND STRIPS

The computations are entirely analogous to the preliminary selection of diffracting barriers. No check is made for the distance of the ground strip center line from the road section. Therefore, a road section, or a part of it, which is inadvertently specified on a ground strip will not be detected in all cases by the program.

DIFFRACTION OF DIRECT RAY

The initialization of a path length DELP \emptyset = -0.2 means that the attenuation by diffraction is set equal to zero in the frequency band centered at 500 Hz.

The test for whether or not a barrier possibly shields the entire road is made in the x-y plane and does not account for the actual height of the barrier.

The height difference for sound rays from cars above the barrier provides a rather conservative check for possible effects of diffraction. A positive height difference means the source is visible from the receiver location.

Only the most effective of a number of parallel barriers is considered; thus, the barrier having the strongest diffraction is retained. Note that this barrier is not necessarily the highest one. It is just as likely to be the barrier nearest to the road or to the receiver.

The calculation of a road segment with sufficiently similar diffraction is performed for cars only. It is then assumed that the same result holds for trucks having a different source height.

The check for maximum diffraction of sound in the frequency band centered at 500 Hz is made for trucks only, because the higher source height of trucks will result in smaller diffraction than for cars. If this test reveals a path length difference of more than 12.5 ft, further checks on other barriers can be skipped for the road segment considered. If a very high barrier shields the entire remaining road section, no further tests for diffractions of the direct ray are made. This procedure may result in some inaccuracies for very long road sections for which the diffraction of sound from points near to the receiver is very strong but for which the diffraction of sound from remote points might be considerably weaker. However, these inaccuracies are no more serious than those resulting from the assumption of the arbitrary value of 12.5 ft for the maximum path length difference, and are thus neglected.

GROUND ABSORPTION

Absorptive ground strips are disregarded for sound from a road segment whenever an attenuation different from zero is found due to barrier diffraction. The criterion for this decision may be modified in the future to be 5 or 10 dB, corresponding to path length differences of 0 to 0.1 ft at 500 Hz, if field experience shows that this is necessary. Furthermore, the decision to neglect ground strips, which is related to certain heights of rays above the center line of the ground strip, is not based on experimental evidence and may require modifications.

PRELIMINARY SELECTION OF REFLECTORS

By the introduction of an image receiver location, the reflection problem becomes similar to the diffraction problem. A reflector in the path from the road segment to an image receiver is effective whenever a barrier in the path from the road segment to a receiver strongly diffracts the sound.

In addition to the preliminary checks made above for diffracting barriers, the intensity of the direct (or diffracted) sound from the road segment considered is compared to the potential maximum contribution of each reflection. This check assures that only essential reflectors are considered. Since a reflector might not be high enough or reflections might be strongly attenuated by diffraction at additional barriers in the ray path, the reflectors found at this stage are considered "potential" reflectors.

Also involved in the part entitled "Preliminary Selection of Reflectors" is the preliminary selection of barriers which can possibly diffract the reflected sound. The check performed is based on the length and orientation of a barrier section and on the distance from the image receiver relative to the respective parameters of the road section and the receiver considered.

CALCULATION OF POTENTIAL REFLECTIONS

The computations in this section are analogous to those made for the diffraction problem except for a simplified decision concerning the height of the reflector. If the height difference above the reflector of a sound ray from the nearest point on the road segment leads to the acceptance or rejection of the reflector, no further check is made for other source points on the road segment.

Since diffraction of the reflected ray is not yet checked, a reflection is still called a potential one and the end point of the road segment is preliminary.

CONSIDERATION OF DIFFRACTION BEFORE REFLECTION

Checks for barriers in the area defined by projections of the four points XR1, XR2, XRB3, and XRB4 into the x-y plane are made by considering first the triangle containing image rays and then the triangle formed by the road segment and the image receiver.

If a barrier is found to be high enough for possible diffraction, the reflector is checked again to determine whether or not it is high enough to reflect the diffracted rays (which now come from an effective source that might be considerably higher than the roadway).

Calculation of the path length difference between diffracted and direct rays from only the near point of the road segment implies that the diffraction of sound rays from other source points is about the same.

Very strongly diffracted reflections are neglected. The decision is made on the basis of the diffraction of sound from trucks, since rays from cars are even more strongly diffracted.

CONSIDERATION OF DIFFRACTION AFTER REFLECTION

Checks are made for diffracting barriers in the triangle defined by projections of the reflector segment XRB3, and the receiver XRC onto the x-y plane.

After a barrier has been found which is high enough for possible diffraction, the reflector is checked to determine whether or not it is high enough to reflect sound towards the top line of the diffracting barrier, which might be considerably higher than the receiver.

Calculation of the path length difference implies simplifying assumptions similar to those for the problem of diffraction before reflection.

PRELIMINARY SELECTION OF DIFFRACTING BARRIERS

For all sections of all barriers:

PRELIMINARY SELECTION OF ABSORBING GROUND STRIPS

DIFFRACTION OF DIRECT RAY

PRELIMINARY SELECTION OF REFLECTORS

CALCULATION OF POTENTIAL REFLECTIONS

CONSIDERATION OF DIFFRACTION BEFORE REFLECTION

Reflections are neglected in the case of diffraction before and after reflection and in the case of very strong diffraction after reflection.

FINAL COMPUTATIONS AND SUMMATION OF SOUND INTENSITIES

In order to facilitate future calculation of higher order statistical parameters of the noise, the contributions from all reflections are used to calculate a gain factor of the direct sound from a road segment. The subsequent computations are directly oriented at the formula of Equation A-8 for the mean sound intensity.

Also intended for future use is the separate computation of angles ANG1 and ANG2, of which only the absolute value of the difference is employed in Equation A-8.

After the calculation for a road segment has been completed, a point 1 ft beyond the end point of the segment is taken as the initial point of the next road segment. This procedure avoids computational complications without unduly sacrificing accuracy.

LIST OF VARIABLES FOR SUBROUTINE GEOMRY

A Atmospheric attenuation factor, ground absorption parameter

ADST ANG/DIST

ANG Angle subtended at receiver by road segment

ANG1 Angle α_1 in Fig. A-1

ANG2 Angle α_2 in Fig. A-1

ANGI Angle subtended at image receiver by road segment

ANGIMG Angle subtended at image receiver by barrier section

B1 End point of barrier section

BGS Width of absorptive ground strip

BGT Width of absorptive ground strip

BX x-coordinate of barrier point

BY y-coordinate of barrier point

 ${\tt BZ}$ z-coordinate of barrier point

CA1 $cos(\alpha_1)$

- CA2 $cos(\alpha_2)$
- CPREV Angular function C_{n-1}, defined in Equation A-10
 - CQ Factor accounting for standard deviation of reference level
 - DELM Mean path length difference
 - DELP Path length difference
- DELPØ Maximum path length difference for diffraction of direct ray
- DELP1 Maximum path length difference for diffraction before reflection
- DELP2 Maximum path length difference for diffraction after reflection
- DELPA Path length difference for diffraction of direct ray
 - DELR Path length difference for reflected ray
- DELTA Distance along the roadway
 - DIST Distance from the receiver to the source line
- DISTI Distance from the image receiver to the source line
- DISTJ Distance from the image receiver to the diffracting barrier
 - DL Mean path length over an absorptive ground strip
 - DN1 Distance from the receiver to the nearest point of the road segment
 - DN1I Distance from the image receiver to the nearest point of the road segment
 - DN2 Distance from the image receiver to the nearest point of the diffracting barrier
 - DR1 Distance from the receiver to the initial point of the road segment
 - DRK Distance from the receiver to the preliminary end point of the road segment
 - FB Attenuation factor accounting for diffraction and reflections
 - FCTR Weighting factor for reflections

FG Ground attenuation factor

HDIFA Height of ray from source point XR1 to receiver XRC above barrier

HDIFF Height of ray above barrier, reflector, or ground strip

HGA Data for effective height of ground cover

I Index

IA Alphanumeric "A"

IBAR Barrier number

IBLAST Barrier type

ICODE Number for intermediate printout

IDUM Index for kind of absorptive ground cover

IDXR Number of reflections

IERR Error index

IGRA Ground strip number

IF Index for frequency bands

II Index

IK Frequency band number

IKIN Index for kind of absorptive ground cover

IP Frequency band number

IQ Index

IR Alphanumeric "R"

ISEG Barrier section number

IT3 2N - 1

ITRIG Trigger

KAR Alphanumeric indicator for type of barrier

KBAR Total number of barrier sections; index for barriers

KBAR1 Reflector number in storage

KBAR2 Diffractor number in storage

KBCODE Indicator for relative location of barrier

KCD Indicator for relative location of barrier

KDIFF Barrier number in storage

KF Index for frequency bands

KGA Number of ground strips stored

KGCODE Indicator for relative location of ground strip

KIMG Reflection number

KNUMB Total number of relevant barrier sections

KREF Reflector number stored

KRDNUM Total number of barrier sections relevant to reflection

KRFDF Barrier number stored

KRNUM Total number of relevant reflector sections

KTRIG Indicator for intersection of barrier or ground strip

LOC Indicator for relative location of barrier or ground strip

MDIFF Indicator for diffraction before reflection

MODD Indicator for diffraction of direct ray

MR Roadway number

N Cumulant numbers

NB Number of barriers

NBSEC Number of barrier sections

NBSM1 Number of sections for one barrier

NDIFF Number of barriers stored

NF Number of frequency bands

NG Number of absorptive ground strips

NIMG Number of reflections

NLIM Number of points defining one barrier

NQ Number of vehicle types

- NQQ Number of groups within one vehicle type
- NQS Vector notation for number of vehicle groups
 - NR Number of roadways
- NREF Number of reflectors stored
- NRFDF Number of barriers stored
 - PP Frequency band number
 - R1 End point of potential reflector
- RATIO Weighting factor for reflected rays
 - RB1 End point of barrier in path of reflected ray
 - RDIN Vector notation for initialization parameters
 - SA1 $sin(\alpha_1)$
 - SA2 $sin(\alpha_2)$
 - T1 Temporary variable
 - T2 Temporary variable
 - T3 Temporary variable
 - TAl End point on center line of absorptive ground strip
- VEXPH Vehicles per foot
 - XB1 Initial point of barrier stored
 - XB2 End point of barrier stored
 - XDBl Initial point of barrier stored
 - XDB2 End point of barrier stored
 - XDB3 Initial point of effective barrier segment
 - XDB4 End point of effective barrier segment
 - XG1 Initial point of center line of absorptive ground strip
 - XG2 End point of center line of absorptive ground strip
 - XG3 Initial point of effective ground strip segment
 - XG4 End point of effective ground strip segment
 - XIMG Vector of image receivers for all reflections

- XJ Preliminary end point of effective reflector segment
- XK Preliminary end point of road segment
- XKA Cumulant of the A-weighted sound intensity
- XKI Preliminary end point of image road segment
- XLA A-weighted intensity in frequency bands
- XLE Mean intensity
- XLREF Vector notation for reference intensities
 - XN1 Point on road segment nearest to receiver
 - XN1I Point on road segment nearest to image receiver; point on image road segment nearest receiver
 - XN2 Point on barrier segment nearest to image receiver
 - XNPT Point on source line nearest to receiver
- XNPTI Point on source line nearest to image receiver
- XNPTJ Point on image source line nearest receiver
 - XR X-coordinate of receiver
 - XR1 Initial point of road segment
 - XR10 Initial point of road section
 - XRII Initial point of image road segment
 - XR2 End point of road segment
 - XR20 End point of road section
 - XR2D End point of road segment with constant attenuation by diffraction
 - XR2G End point of road segment with constant attenuation by ground absorption
 - XR2I End point of image road segment
 - XRB1 Initial point of reflector stored
 - XRB2 End point of reflector stored
 - XRB3 Initial point of effective reflector segment
 - XRB4 End point of effective reflector segment

XRC Receiver point

XRCI Image receiver point

XXG1 X-coordinate of point on ground strip center line

YR Y-coordinate of receiver

YYG1 Y-coordinate of point on ground strip center line

ZN10 Z-coordinate of XN1 or XN1I

ZR Z-coordinate of receiver

ZS Height adjustment for vehicles

ZZG1 Z-coordinate of point on ground strip center line

DESCRIPTION OF OTHER SUBROUTINES AND FUNCTIONS

SUBROUTINE FILES

FILES defines file device numbers of the three files with roadway, barrier, and absorptive ground strip data created by the subroutine INPUT and for the four subfiles with barrier and ground strip data created by the subroutine GEOMRY.

SUBROUTINE INTER (NR, IQ)

INTER interpolates between stored A-weighted overall and octave band reference levels to find reference intensities in frequency band numbers IQ as a function of the average speed of vehicles in a group.

FUNCTION AMAG (X1V, X2V)

 $\,$ AMAG is a function subroutine which calculates the distance between the points X1V and X2V.

FUNCTION ANGLE (X1V, X2V, X3V)

ANGLE is a function subroutine which calculates the angle at point X3V that is subtended by the line between X1V and X2V. The angle is positive with values between 0 and $\pi.$

FUNCTION BARFAC (KF, DELP)

BARFAC is a function subroutine which calculates the attenuation factor due to barrier diffraction as a function of the

frequency band number KF and of the path length difference DELP of the diffracted ray path relative to the direct ray path.

SUBROUTINE BLOCN (X1V, X2V, X3V, X4V, X5V, X6V, LOC)

BLOCN calculates the location LOC of a barrier or a ground strip, defined by the end points X4V, and X5V, relative to the triangle formed by two points X1V and X2V on a road segment and the receiver point X3V (Figure B-3). The point X6V is identical with X2V if both points X4V and X5V are outside the triangle. If one of the points X4V or X5V is inside the triangle, X6V is the intercept of a line through X3V and X4V with the road segment X1V, X2V. If both points X4V and X5V are inside the triangle, then the point X6V is the intercept of the road segment X1V, X2V with the line through X3V and either X4V or X5V depending on which intercept is nearer to the point X1V.

Figure B-3 Notation for Subroutine BLOCN

- LOC = 0 denotes that the line X4V, X5V is outside the triangle X1V, X2V, X3V.
- LOC = 1 denotes that the line X4V, X5V intersects the line X1V, X3V.
- LOC = 2 denotes that the line X4V, X5V intersects the line X2V, X3V.
- LOC = 3 denotes that the line X4V, X5V intersects both lines X1V, X3V and X2V, X3V.
- LOC = 4 denotes that the line X4V, X5V is completely inside the triangle X1V, X2V, X3V.

FUNCTION DEL (X1V, X2V, X3V, X4V, HDIFF, DN1)

DEL is a function subroutine which calculates the path length difference between the ray emanating from the source point X1V and diffracted over the barrier X3V, X4V towards the receiver X2V and the direct ray from X1V to X2V. HDIFF is the height of the direct ray above the barrier, and DN1 is the path length traveled by the direct ray.

SUBROUTINE ENDPT (X1V, X2V, X3V, X4V, X5V, X6V, KTRIG, IERR)

ENDPT calculates the new end point of a road segment from which sound is uniformly attenuated during propagation towards the receiver X3V. The original road segment has the initial point X1V and the end point X2V. A barrier, reflector, or ground strip has the end points X4V, X5V. X6V is the break point on the road between segments that are affected and unaffected by the barrier, reflector, or ground strip. If the entire road segment X1V, X2V is unaffected, KTRIG = 0 and X6V is identical with X2V. If the entire road segment X1V, X2V is affected, KTRIG = 1 and X6V is identical with X2V. If a break point X6V is at a distance of less than 0.51 ft from the initial point X1V, this break point is disregarded. If the initial road segment X1V, X6V is affected by a barrier, reflector, or ground strip, KTRIG = 1, the break point X6V is moved toward X1V by 0.5 ft, and the new end point is denoted as X6V. If the initial road segment is unaffected, KTRIG = 0, the break point X6V is moved towards X1V by 0.5 ft, and the new end point is denoted as X2V.

The error indicator IERR is set in the SUBROUTINE MOVE.

FUNCTION HEIGHT (X1V, X2V, X3V, X4V)

HEIGHT is a function subroutine which calculates the height of a ray from point X1V to point X2V above the line with the end points X3V, X4V.

FUNCTION IEPS (X1V, X2V, X3V, X4V, DEL1)

IEPS is a function subroutine which calculates whether the path length difference DEL1 is sufficiently similar to the path length difference between the ray emanating from X1V and diffracted over the barrier X3V, X4V towards the receiver X2V and the direct ray from X1V to X2V. If the two path length differences are sufficiently similar, IEPS = 1; otherwise, IEPS = 0.

SUBROUTINE IMAGE (X1V, X2V, X3V, X4V)

IMAGE calculates the location of an image receiver X4V relative to a receiver X2V and a reflector with the end points X1V, X2V.

SUBROUTINE INTCPT (X1V, X2V, X3V, X4V, X5V)

INTCPT calculates in the x-y plane the intercept X5V of two lines specified by the two pairs of points X1V, X2V and X3V, X4V.

FUNCTION KCUT (X1V, X2V, X3V, X4V)

KCUT is a function subroutine which checks whether two line segments with the end points X1V, X2V and X3V, X4V, respectively, cross in the x-y plane. If the two line segments cross, KCUT = 1; otherwise, KCUT = 0.

FUNCTION KPOS (X1V, X2V, X3V)

KPOS is a function subroutine which checks whether the point X3V lies between two points X1V and X2V on a line. If it does, KPOS = 1; otherwise, KPOS = 0.

SUBROUTINE MIDP (X1V, X2V, X3V)

 $\mbox{\sc MIDP}$ calculates the center point X3V between two points X1V and X2V.

SUBROUTINE NRPT (X1V, X2V, X3V, X4V, DIST)

NRPT calculates the point X4V, on a line specified by the points X1V, X2V, that is nearest to the point X3V. It also calculates the distance DIST between the points X3V and X4V. If the distance is zero, DIST = 1.

SUBROUTINE NR1 (X1V, X2V, X3V, X4V, DIST, X5V, DN1)

NR1 calculates the point X5V, on a line segment between the end points X1V, X2V, that is nearest to the point X3V. It also calculates the distance DN1 between the points X3V and X5V. The subroutine employs as input parameters the distance DIST between the receiver and the nearest point X4V on the entire line.

SUBROUTINE REPLCE (X1V, X2V)

REPLCE sets the vector X2V equal to the vector X1V.

SUBROUTINE SECTN (X1V, X2V, X3V, X4V, X5V, X6V, X7V)

SECTN calculates the segment X6V, X7V of the line between X4V and X5V that is bounded by the two lines from X3V to X1V and from X3V to X2V.

SUBROUTINE TRI (X1V, X2V, X3V, X4V, X5V, KTRI)

TRI determines whether or not the point X4V lies in the triangle formed by the points X1V, X2V, X3V. If X4V is in the triangle, KTRI = 1; otherwise, KTRI = o. TRI also calculates the intercept X5V of two lines specified by the points X1V, X2V and X3V, X4V, respectively.

FUNCTION ZCOR (X1V, X2V, X3V)

ZCOR is a function subroutine which calculates the z-coordinate of the point X3V so that the point X3V lies on the line specified by the points X1V and X2V.

SUBROUTINE MOVE (X1V, X2V, X3V, DELTA, IERR)

MOVE calculates the point X2V, on the line specified by the points X1V and X2V, that is at a distance of DELTA feet from the point X1V in the direction away from X3V. MOVE gives the error message IERR = 4 if the two points X1V and X3V are identical.

FUNCTION TAN (X)

TAN is a function subroutine which calculates the tangent of \boldsymbol{x} .

FUNCTION ACOS (X)

ACOS is a function subroutine which calculates the arc cos of X between 0 and $\boldsymbol{\pi}.$

CONSTRAINTS ON INPUT DATA

The storage of input data in core memory is laid out for a maximum number of

- 10 roadways,
- 10 barrier, and
- 10 ground strips.

Further constraints given in the "User's Manual" are maximum numbers of

- 5 speed groups each for trucks and passenger cars,
- 10 sections for each roadway,

- 10 sections for each barrier, and
- 15 receivers.

These constraints may, of course, be changed through appropriate changes to the dimension statements in the FORTRAN IV program, provided adequate core storage is available.

	TRAFFIC NOISE PREDICTION MODEL	
	MAIN PROGRAM 12/14/71	
- 1	DIMENSION SIG(4), XKAP(4)	
	DIMENSION XRI(3), XR2(3)	
	COMMON/INDU/INPT.InuT	
	COMMON/BLK2/NQ	
	COMMON/INPTL/RDIN(15)	İ
	COMMON/INPT2/NR,NG	
	COMMON/INPT3/XRC(15), YRC(15), ZRC(15), NRC	
	COMMON/ORIV2/NOS(10,4),NF	
	COMMON/DRIVA/CO(4) • XLE(0)	
	COMMON/STORE4/XMPH(10,5,4),VFXPH(10,5,4)	
	CDW4DN /STD8 F5/NOC(5)	
	COMMON/DRIV4/XKA(5)	
	COMMON/STORE3/RX[10,11), RY[10,11), RZ[10,11), NRSM1[10)	
	DATA L2/24ZZ/	
	INTEGER TITLE(15)	
	FOUTVALENCE (RDIN(3), SIG(1))	
	1 ND=3	
	NG=0	
	CALL FILES	C.
	(TITLE(I), I=1,15)	S
	JE(TITLE(1).EQ.L2)GO TO 105	
		P=1
	(TITLE(I), I=1, IS)	15
		2.2
	NF=anin(2)	
	WRITE(INUT, 1002)(TITLE(T), I=1,15)	r C
	WPITE(INIT, 1903)	22
	ng 11 I=1,40	
	CO(I)=EXP(.5+(SIG(I)*.23024)**2)	7

	75	04/18/71	82	173
CONTINUE DO 60 I=1, NPC DO 15 (1=1, NPC XLF(J)=0. CONTINUE XKA(J)=0.	DD 50 M=1,NR DD 70 ID=1,NQ NDC1=NDS(M,IQ) IE(NDC1,EQ.0) GD TD 20 CALL INTER(M,IQ) CONTINUE XR1(1)=RX(M,1) XR1(2)=RY(M,1) XR1(2)=RY(M,1) XR1(2)=RY(M,1) XR1(2)=RY(M,1) XR1(3)=RZ(M,1) NLIM=NRSM1(M) DD 40 N=2,NLIM			CALL PEPLCE(X92,XR!) CONTINUE CONTINUE DO 55 J=1.NF XL=(J)=100.+10.*ALmG10(XLF(J)) CONTINUE TF(I.F0.1) GO TO 155 WRITE(ITUT.1003)

25 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	132 123	135	147	
155 WRITE(IOUT,1004) I,XRC(I),Y2C(I),7PC(I) 156 IE(NE_EQ_1) GD TD 56 WRITE(IOUT,2010) WRITE(IOUT,2001) WRITE(IOUT,2002) (XLE(II),II=2,NE) 56 XLA=100,+10,0*ALDG10(XKA(I)) DD 59 J=2,4	XKAP(J)=XKA(J)/XKA(I)**! Q CONTINUE SIGL=4.35*SORT(ALOG(1.+XKAP(2))) XLNP=XLA+2.55*STGL XLSO=XLA-SIGL**2/R.7 XLSO=XLA-SIGL**2/R.7	XL30=XL50-1.2R*SIGL WRITE(I)UT,2003) WRITE(I)UT,20041XLA.XLVP.XL90.XL50.XL10 O CONTINUF GO IN 100 F WRITE(I)UT,1006)I,M,N,IRAR,ISEG	30 TO 100 WRITE(INUT,1009);, W 50 TO 100 WRITE(INUT,100R);, W 60 TO 5 GO TO 1 FORWAT(1140RECEIVER	1004 F78MAT(4X,13,5X,3F1Z,1) 1005 F78MAT(15A2) 1006 F78MAT(15A2) 1006 F78MAT(44H0ILLEGAL BARRIEP INTERSECTS ROADWAY FOR 2 FC 12,2X,2HR 12, 1007 F78MAT(49H0ILLEGAL GROUND STRIP INTERSECTS ROADWAY F7 2 FC 12,2X,2 1009 F78MAT(49H0T03 MANY RELECTIONS,RCV ,12,4H P ,12,4H S ,12) 2001 F78MAT(26H0T03 MANY RELECTIONS,RCV ,12,4H P ,12,4H C 2 12) X 4440003X,4H8000) X 4440003X,4H8000) 2002 F78MAT(10X,8F7.1) 2003 F78MAT(10X,8F7.1) 2004 F78WAT(11,15X,24HTPAFFIC NOISE PREDICTION//)

2010 FORMAT(/25X, 22HOCTAVE RAND LEVELS (4))

10.6HJUSTME.	N & P	ENQ C.	• S45,445	EDR T.	4-HTQ)CKS,		יס ירש	, FUNEW VE			10			er v		The second secon	86	76			The state of the s	04/18/71		The second secon
9) / GHRECFIV, SHER HFI, SHGHT	1,9)/6HNUMBEP,4H OF FP,5HFOUENC,4HY	AZD DEV, 6 HIATION	HFIGH, AHT FOR	1	.H6H(TYPE .4H2 VEHI.6H(LES) /	/ ну ну ну ну	1/6HST ANDA	1/6HSDURCE, 6H HEIGH, 6HT FOR	, 44, 46, 44,		C	100+11+1 C	PROGRAM INITIALIZATION PARAMETERS		VALUE, INN, TLAST, (ALPHA(I), [=1,25)	K) GO TO 13	6) VALUE, IDN, (ALPI(I, IDN), I=1,7)	VAL (15, IDN, (ALPHA(I), I=1,25)	GO TO 11		And the second s		EFN SOURCE STATEMENT - IFN(S)	
DATA BINK/6H DATA (ALPI([,1),I=1, , AHNT ,6H	P1(1,2)	LP1(I,3)	1(1,4)	DATA (ALP1(1.5),1=)	A CALPICES .	5H	DATA (ALP! (I,7)	DATA (A! P1 (1.8). [=]. 9	SHHTCLES.6	- 1	-	CO TOTTO 20 30	DATA	10 WRITE(IDUT. 2000	11 READ(INPT, 1001) VA	R DN(I DN) = VALUE	WRITE(I)UT, 2016) V.	3 WRITE(INUT.2001)	.LAST)	DA 12 J1=1,	.12=J1+2		dNI	

02 63		C C	(J,NSEC),ILAST		
NCI ION ION ION IEI	C VEHICLE DATA C 20 NR=I1		VGC1=NQS(J,ITY) VEXPH(J,NQC1,ITY)=VEH/XMH/5280. XMPH(J,NQC1,ITY)=XMH IF(ILAST,NE,LAST)GO TO 22 C. ROADWAY DATA SECTIONS 24 READ(INPT,1003)RX(J,NSEC),PY(J,NNSEC),RZ(J,NNSEC),ILAST IF(ILAST,EQ,LAST)GO TO 25	NSEC=NSEC+1 GO TO 24 25 F(NSEC-1.NE.0)GO TO 26 WRITE(INUT, 2010) CALL EXIT 26 NRSM1(J)=NSEC-1	C BARRIER DATA SECTIONS 30 NR=I1

129	141	04/18/71		156	192	195
	GO TO 31 32 IF(NSEC-1.NE.0)GO TO 33 WRITE(IOUT,2011) CALL EXIT 33 NBSMI(J)=NSEC-1 35 CONTINJE GO TO 5	GROUND STRIPS	IFING.EQ.0)GO TO 5	READ(INPT.1004)XXG1(I.1),YYG1(I.1),ZZG1(I.1),RGS(I) READ(INPT.1003)XXG1(I.2),YYG1(I.2),ZZG1(I.2),IDUM(I) IF(IDUM(I),EQ.IG)IDUM(I)=1 IF(IDUM(I),EQ.IT)IDUM(I)=2 37 CDNIINUE GO TO S C RECEIVER DATA 40 NRC=11	DO 41 I=1,NRC READCINPL, 10031XRC(I),YRC(I),IRDUM ZRC(I)=ZRC(I)+XNIGHT 41 CONTINUE GO TO 5	50 DJ 65 J=1,NR WRITE(INIT,2002)J DD 55 K=1,NQ NOC1=NQS(J.K)

IF(NOC1.E0.0) GO TO 55 DO 54 I=1.NOC1	
VTEMP()=VEXPH(J, ,K)*XMPH(J, ,K)*5280. WRITE(DHT,2004) K,(,VTEMP(),XMPH(J, ,K , = ,NOC1)	210
CONTINUE	717
WHITE (1001, 2005) R X(J,1), PY(J,1), RZ(J,1)	21 R
NSEC	202
CONTINUE	
CONTINUE	
IF(NB.EQ.3)GO TO 80	
WRITE(1307-2007) J. IRLAST(J)	539
	241
00 70 1=2,NSFC	26.8
WRITE(IOUT,2006)1,8X(J,1),8X(J,1),8X(J,1)	
CONTINCE	
IF(NG.FD.0) GO TO 90	
DR 85 I=1,NG	
IF(IDUM(I).EO.1)IDM=IG	
IF(IDUM(I).EO.2)IDM=IT	
MRITE(10117, 2012) 1, 10M, XXG1(1,1), YYG1(1,1), ZZG1(1,1),	269
HOSTI JOXXOI CIOZIOTTICI TOZIOZZINIOZI	
WRITE(IOUT, 2008)	270
WRITE(101)T, 2006) I, XRC(T), YRC(T), ZQC(T)	282
CONTINUE	
RETURN	
FJRW4T(2F10.0,15,5X,41)	
	24/18/71
- (S)Nat - thansately addition and - dollar	

	SRAM INITIALIZATION PARAMETERS)	FIRMAT(10HONIMBER DE13X,5HVEH/HRX,3HMPH/5H TYPE,I2,4H VEH/(3X,T2,15X,2E13.4))	FORMAT(7HONUMBER,5%,1HX12%,1HY12%,1HZ/4%,1H1,2%,3F13.4%) FORMAT(3X,12,2%,3E13.4) FORMAT(10H0BARRIFR I3,2%,1H(A1,1H)10%,19HRARRIFR CATRD IN FT)	CTENT ROAD SECTIONS)	ENMAT(19HOABSONRING STRIP 13,2X,1H(A),1H)//5H PT 7X,1HX12X,1HY) EX,1HZ12X,5HWDTH/4X,1H12X,4F13.4/4X,1H22X,3F13.4) COMMIT:000 10000000 1000000000000000000000000	FORMATISX,23HOPTIONAL NOISE SPECTRUM/5X,9F7.1)	12/81/70	DURCE STATEMENT - TEN(S) -	(72)	TL1(1,1,1))	110,5,4),VEXPH(10,5,4) 0,4),NF	(2), TL(3), TL(4), TL(5), TL(6), TL(7), TL(8), 10),TL(11),TL(12),TL(13),TL(14),TL(15),TL(15), 18),TL(19),TL(20),TL(21),TL(22),TL(23),TL(24), 26),TL(27),TL(28),TL(29),TL(30),TL(31),TL(32),
1003 FORMAT(3E10.0, A1)	FORMAT(9E5.0) EDRMAT(34HOPRO) FORMAT(1X, E12.	2004 F12MAT(10HONIMBER OF13X,5HN		pro-1	012	2015 FORMATISX,23HOPTIONAL NOISE 2016 FORMATIIX, F12,5,110,5X,946)	CN3	0 1	NE IN	COMMON/XIN/ XINS(9).NINF	COMMON/SIORE4/XMPH(10,5,4),VEXPH(10,5,4) COMMON/SIV2/NOS(10,4),NE COMMON/DRIV2/NOS(10,4),NE	DATA TL(1), TL(2), TL(3), 1 1 TL(9).TL(10).TL(11),TL 2 TL(17),TL(18).TL(19),TL 3 TL(25),TL(26),TL(27),TL

40°, 62°,			34 34 34	14/2 1/21
4 TL(23),TL(34),TL(35),TL(36)/ 5 51.,75.,38.,48.,45.,57.,47.,62.,55.,66.,48.,70.,54.,72.,40.,63., 6 42.,57., 7 2*87.,2*50.,2*73.,2*78.,2*82.,2*79.,2*74.,2*66./ IF(NINF.LE.0) GO TO 1	00 13 J1=1,9 J2=35+2*J1 J3=36+2*J1 J4=53+2*J1	I	13 CDN 11NDE 1 NOO=NOS(NR,10) CONS=ALGG10(70./20.) DO 10 IF=1,NF TEMP=TL1(2, FF, IO) - TL1(1, IF, IO) DO 10 I=1,NOQ XLPFF1=TL1(1, IF, IO) + TEMP*ALG10(XMPH(NR, F, IO)/20.)/FONS XLPFF(NR, I, IF, IO)=10.**((XLPFF1-56.)/10.)	PETIJRN FND FND ANG - FFN STIPCF STATEMENT - TFN(S) -

C FIND MAGNITUDE OF VECTOR
DIMENSION XIV(3), X2V(3)
AMAGS SQRT(DSOP(XIV, X2V))

RETIPN

C

53

34/18/71	2 2	8 7	12/18/17		27 28
ANGL - FFN SOUPCE STATEMENT - IFN(S) -	FUNCTION ANGLE(XIV, X2V, X3V) DIMENSION XIV(3), X2V(3), X3V(2) DI3=DSQR(XIV, X3V) D23=DSQR(X2V, X3V) ANGLE=1,5708	IF(D13#D23.ED.O.)RETURN D12=DSGR(X1V,X2V) ANGLE=ACOS((D23+D13-D12)/(SORT(D13*D23)*2.)) RETURN END	BARE - EFN SOURCE STATEMENT - IFN(S) -	FUNCTION BARFAC(KF, DELP) C FIND BARRIER FACTOR IF(DELP, EQ, -0, 2) GO TO 3 IF(DELP, GE, 12, 5) GO TO 4 IP=KF	3 BARFAC=1.0 RETURN 4 BARFAC=4.0E-3 RETURN 5 BARFAC=(TANH(SORT(A))**2)/A/3.16 6 BARFAC=316

21 32	34/18/71	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	04/19/71
7 A1=ABS(A) BARFAC=(TAN(SORT(A1)))**2/A1/3.16 RETURN END	BLOC - EFN SOURCE STATEMENT - TEN(S) -	SUBROUTINE BLOCM(XIV, X2V, X3V, X5V, X6V, LOC) C FIND RELATIVE LOCATION OF BARRIER DIMENSION XIV(2), X2V(2), X3V(2), X5V(2), X6V(2), X4V(2), X6V(2),	X5V(2)=XAV(2) RETURN END OFL 1 - FFN SHIPCE STATEMENT - TFN(S) -

FUNCTION DEL(XIV, X2V, X3V, X4V, HDIFF, DN!)

2 4 5 7 7	24/18/71		041'8/71		7 7 14
C FIND PATH LENGTH DIFFERENCE DIMENSION XIV(3).X2V(3).X4V(3).X4V(3).X8V(3) CALL NRPT(X3V,X4V,X1V,X4V,DISTA) CALL NRPT(X3V,X4V,X2V,X8V,DISTA) DISTC=DSQR(XRV,X4V) DFL=SQRT((DISTA+DISTB)**2+DISTC)-DNI IF(HDIFF.GT.O.)DEL=-DEL RETURN	END DSGR1 - FFN SOURCE STATEMENT - IFN(S) -	FINCTION DSOR(XIV, X2V) DIMENSION XIV(3), X2V(3) DSOR=0.0 D7 10 I=1,3 10 DSOR=(XIV(I)-X2V(I))**2+DSOR RETURN FND	ENPT - FFN SOUPCE STATEMENT - IFN(S) -	SUBROUTINE ENDPT(X1V,X2V,X3V,X4V,X5V,X6V,KTRIG,IERR) C FIND NEW ENDPOINT DIMENSION X1V(3),X2V(3),X3V(3),X4V(3),X5V(3),X6V(3),XNUM(3) IFRR=0 KTRIG=0	ITRIG=1 CALL REPLCE(XIV,XNUM) I CALL BLOCN(KNUM,X2V,X3V,X4V,X5V,X6V,LNC) IF(LNC,EQ.O) RETURN IF(LNC,NE,3) GD TD 2 CALL REPLCE(X2V,X6V) GO TO 4 2 X6V(3)=ZCOR(XIV,X2V,X6V)

F. C.	50	2 E	35	04/18/71	2 4 5	04/18/71	3 4 5
IF(ITRIG.EQ.O) GO TO 5. IF(AMAG(XIV.X6V).GT.O.51) GO TO 5 ITRIG=0 DF: IA=-0.51	1 1	S DELIA=-0.7 IF(LDC.E0.1) GO TO 3 CALL MOVE(X6V,X2V,X1V,DELTA,IERR) RETURN	3 CALL MOVE(X6V,X6V,XIV,DELTA,IERR) 4 KTRIG=1 RETURN END	HGT - EFN SOURCE STATEMENT - IFN(S) -	C FIND HEIGHT(XIV,X2V,X3V,X4V) C FIND HEIGHT DIFFRENCE DIMENSION XIV(3),X2V(3),X4V(3),X1(3) CALL INTCPT(XIV,X2V,X3V,X4V,XI) HEIGHT=ZCOR(XIV,X2V,XI)—ZCOR(X3V,X4V,XI) RETURN END	IEP - EFN SOURCE STATEMENT - IFN(S) -	C CHECK ON PATH LENGTH DIFFERENCE DIMENSION XIV(3),X2V(3),X3V(3),X4V(3) IEPS = 0 DIST = AMAG (XIV,X2V) HDIFF = HEIGHT (XIV,X2V) HDIFF = HEIGHT (XIV,X2V,X3V,X4V) DEL2 = DEL (XIV,X2V,X3V,X4V,HDIFF,DIST) DELM (DEL1+DEL2)/2. IF((ARS(DEL2-DEL1) = 0.1-DELM/50.* (1.+DFLM)).GT.0.) IEPS=1

	14/18/71				04/18/71		
	SOURCE STATEMENT - IFM(S) -	• X3V• X4V) X3V[3] • X4V[3]	TO 10 -X2V(2))*AX-(X3V(1)-X2V(1))*AY)*2.0) /AXY Y*RATIO		SHIRCE STATEMENT - IFN(S) -	CPT(X1V,X2V,X3V,X4V,X5V) TWO LINES IN A PLANE 21,X2V(2),X3V(2),X4V(2),X5V(2) 1)	2
RETURN	I MAG - CFN	C FIND IMAGE POINT C FIND IMAGE POINT DIMENSION XIV(3), X2V(3), X3V(3), X4V(3) AX=X2V(1)-X1V(1)	AY=XZV(Z)-X1V(Z) AXY=AX**Z+AY**Z RATIO=0. IF(AXY.EQ.0.)GO TO 10 RATIO=((X3V(Z)-XZV(Z))*. 10 X4V(1)=X3V(1)+AY*RATIO	X4V(2)=X3V(2)-AX#RAT(I) X4V(3)=X3V(3) RETURN END	INTCT - FFN	SUBROUTINE INTEDITIVEXS C FIND INTERCEPT OF TWO LINES DIMENSION XIV(2).X2V(2) AX=X2V(1)-X1V(1) AY=X2V(2)-X1V(2)	2) X*X2V(2) X*X4V(2) -5)Gn Tn -8X*C1)/D

5	771	w r or	127		(71
	15N(S) - 04/19/71		JEN(S) - 034/18/71	2))*(X2V(2)-X2V(2)	1FN(5)
	SOURCE STATEMENT - IF	(4V) CPOSS /(2),X4V(2),X5V(2) /,X5V) FTURN (CUT=1	SOURCE STATEMENT - IF	. X2 V, X3 V) F ON LINE (2V(2), X3V(2)) (3) * (X3V(1) - X2V(1)) + (X3V(2) - X1V(2)) * (X3V(2) - X2V(2))	SOURCE STATEMENT - IFN
RETURN D=SQRT (AX**2+AY**2) X5V(1)=X1V(1)+(AX/D)*1.E+15 X5V(2)=X1V(2)+(AY/D)*1.E+15 RETURN END	EFN ST	FUNCTION KCUT(XIV, X2V, X3V, X4V) RMINE IF TWO LINE SEGMENTS CROSS DIMENSION X1V(2), X2V(2), X3V(2), X4V(2), X5V(2) KCUT=0 CALL INTCPT(XIV, X2V, X3V, X4V, X5V) IF(KPOS(XIV, X2V, X5V), NE.1) RETURN IE(KPOS(X3V, X4V, X5V), EQ.1) KCUT=1 RETURN END	- EFN SO	FUNCTION KPDS(XIV, X2V, X2V) POSITION OF POINT ON LINE DIMENSION XIV(2), X2V(2), X3V(2) KPOS=1 IE(((X3V(1)-X1V(1))*(X3V(1)-X2 1).5T.0.)KPOS=0 RETURN END	- EFN SO
RETURN 2 D=5QRT (AX**2+AY**2 X5V(1)=X1V(1)+(AX/ X5V(2)=X1V(2)+(AY/ RETURN END	KCT	C DETERMINE IF TWO LINE DIMENSION XIV(2). KCUT=0 CALL INTCPT(XIV,XX IF(KPOS(XIV,X2V,X IF(KPOS(XIV,X2V,X RETURN END	S d X	C FIND POSITION OF POINT DIMENSION XIV(2).X KPOS=1 IF(((X3V(1)-X1V(1))1).5T.0.)KPOS=0 RETURN END	MDP

SUBRUUTINE MIDD (XIV, X2V, X3V)

FIUN CENTER POINT DIMENSION XIV(3), X2V(3), X2V(3) DO 10 I=1,3 X3V(I) = (X1V(I)+X2V(I))/2, RETURN END	NRP - EFN SOURCE STATEMENT - IFN(S) -	SUBROUTINE NRPI(X1V,X2V,X3V,X4V,DIST) NEAREST POINT TO LINE DIMENSION X1V(3),X2V(3),X3V(3),X4V(3),AV(3),BV(3) EQJIVALENCE (AV(1),AX),(AV(2),AY),(AV(3),AZ),(BV(1),BX),(BV(2),BY)	00 5 1=1,3 AV(I)=X2V(I)-X1V(I) BV(I)=X3V(I)-X1V(I) CONTINUE	RATID=0. TEMP=DSQR(X2V,X1V) IF(TEMP.NE.0.)RATID=(AX*RX+AY*RY+AZ*RZ)/TFMD DO 10 1=1,3 X4V(1)=X1V(1)+RATID*AV(1)	CONTINUE DIST=AMAG(X4V,X3V) IF(DIST-E0.0.)DIST=1. RETURN END	NRRI - EFN SOURCE STATEMENT - IFN(S) - 04/18/71	SUBROUTINE NRICKIV, X2V, X3V, X4V, DIST, X5V, DN!) NEAREST POINT TO LINE SEGMENT DIMENSION XIV(3), X2V(3), X3V(3), X4V(3), X5V(3) IF(KPDS(X4V, X2V, XIV), ED.!) GO TO 2 LE(KPDS(X1V, X4V, X2V), ED.!) GO TO 4
C FIND CENTER DIMENSION XI DO 10 I=1,3	NRP	C FIND NEAREST POINT DIMENSION XIVE EQUIVALENCE (AV	DD 5 1=1,3 AV(1)=X2V(BV(1)=X3V(5 CONTINUE		10 CONTINUE DIST=AMAG(IF(DIST-EQ RETURN END	NRRI	C FIND NEAREST DIMENSION TECKPOSCX

13	13	04/18/71		34/19/71	c 4 5 F	04/19/71
CALL REPLCE(X4V, X5V)	RETURN 2 CALL REPLCE(XIV, X5V) GO TO 6 4 CALL REPLCE(X2V, X5V) 6 DN] = AMAG(X5V, X3V) RETURN END	REPLC - EFN SOURCE STATEMENT - IFN(S) -	SUBROUTINE REPLCE(XIV, X2V) DIMENSION XIV(3), X2V(3) X2V(1)=XIV(1) X2V(2)=XIV(2) RETURN FND	SCTN - EFN SOURCE STATEMENT - IFN(S) -	SUBROUTINE SECTN(XIV,XZV,XAV,X4V,X5V,X7V) C FIND EFFECTIVE BARPIER SECTION DIMENSION XIV(3),XZV(3),X4V(3),X5V(3),X6V(3),X7V(3) CALL INTCPT(XIV,X3V,X4V,X5V,X6V) X6V(3)=ZCOP(X4V,X5V,X6V) CALL INTCPT(XZV,XAV,X4V,X5V,X7V) XTV(3)=ZCOP(X4V,X5V,X7V) RETURN END	TRII - EFN SOURCE STATEMENT - IFN(S) -

DIMENSION B1(3,2,10), RI(3,2,10), RB1(3,2,10), TA1(3,2,10) DIMENSION KBCODE(10), KNUMB(10), KRNUMB(10), KRDNIM(12) DIMENSION KGCODE(10), RGT(10), IKIN(10)	D DELPO(4), DELPI(4), DELP2(4), FR(9,4), DELR(4,10), FG(9), HGA(2), X XRI(3), XR2(3), XRR3(3), XRR4(3), XRC(3), X XRBI(3), XRR2(3), XRR3(3), XRR4(3), XRCI(3), X XRI(3), XRZ(3), XRII(3), XRZI(3), XRZ	XLA(5,4), ZS(4), COMMON/INDU/IN COMMON/BLK2/NQ	COMMON/DRIV2/CQ(4), NE COMMON/STORE4/XMPH(10,5,4), VEXPH(10,5,4) COMMON/STORE1/BX(10,5), RY(10,5), TRLAST (10), NASW1 (10) COMMON/STORE1/BX(10,5), RY(10,5), RZ(10,2), RGS(10), NASW1 (10) COMMON/STORE2/XXG1(10,2), YYG1(10,2), ZZG1(10,2), RGS(10), TOHM(10)	COMMON/GED1/IBAR, ISEG, ICPA COMMON/INTER1/XLREF(10, 5, 9, 4) EQUIVALENCE (RDIN(7), ZS(1)) DATA IR/2HR / NATA HGA(1), HGA(2)/10, 20, / XRC(1)=XR	XRC(3)=ZR IERR=0 CALL NPDT(XR10,XR20,XPC,XNPT,DIST) ANSI=ANGLE(XR10,XNPT,XRC)	
	CXXXX	7				2 U U

KAR=IBLAST(IBAR) XB1(1)=BX(IBAR,1) XB1(2)=BY(IBAR,1) XB1(3)=BZ(IBAR,1) NLIM=NBSM1(IBAR,1) DO 15 ISEG=2,NLIM XB2(1)=BX(IBAR, ISEG) XB2(2)=BY(IBAR, ISEG) XB2(3)=BZ(IBAR, ISEG) KBAR=KBAR+1	ICODE=2 WRITE(IOUT,1001)ICODE,KBAR,XB1,XR2 GEDM - EFN SOURCE STATEMENT - IFN(S) -	IF(KCUT(XR10,XR20,XB1,XR2),NF.1)GO TO 10 IERR=1 RETURN CALL BLDCN(XR10,XR20,XRC,XB1,XR2,XK,LOC) IF(LOC.E9.0)GO TO 11 NDIFF=NDIFF+1	KNUMB(NDIFF)=KBAR KBCODEINDIFF)=LOC CALL REPLCE(XB1,91(1,1,NDIFF)) CALL REPLCE(XB2,81(1,2,NDIFF)) CALL PEPLCE(XB2,81(1,2,NDIFF)) CALL PEPLCE(XB2,XR1) CONTINUE IMINARY SELECTION OF STRIPS KGA=0	IF(NG.EO.0)GD TH 20 DD 18 IGRA=1.NG XG1(1)=XXG1(IGRA.1) XG1(2)=YYG1(IGRA.1) XG2(1)=XXG1(IGRA.2) XG2(2)=YYG1(IGRA.2) XG2(3)=ZZG1(IGRA.2) XG2(3)=ZZG1(IGRA.2) XG2(3)=ZZG1(IGRA.2) XG2(3)=ZZG1(IGRA.2) XG2(3)=ZZG1(IGRA.2)
KAR= 10LAST(XB1 (1)=BX[1] XB1 (2)=BY[1] XB1 (2)=BY[1] NL1M=NBSM1(NL1M=NBSM1(NL1M=NBSM1(NL1M=NBSM1(XB2 (1)=BX(1 XB2 (2)=BY(1 XB2 (3)=BZ(1) KBAR=KBAR+1	C ICODE=2 C WRITE(10U	IF(KCUT(XF IERR=1 RETURN 10 CALL BLDCN IF(L)C.E9.	KNIJMB(NDIF KBCDDE(NDI CALL REPLO CALL REPLO 11 CALL PEPLO 15 CONTINUE C PRELIMINARY SE	

7.2
7.0
5
03
40
Vi pri
CFF
124
11101170
Er. Er.

U	IC	
U	MA	WRITE(INUT, 1001) ICODE, KCD, XR2, XK
	00	00 60 IQ=1,NQ
	CAI	CALL NRICXRI, XK, XRC, XNPT, DIST, XNI, DNI)
2.	[NZ	ZN10=XN1(3)
	XNX	
	F	HDIFF=HEIGHT(XN1,XRC,XR1,XR2)
	IF	IF(10.NE.1)GO TO 50
	IF	IF(HDIFF.GT.20.)GD TO 70
	50 DEL	DELP=DEL(XN1,XRC,XB1,XB2,HDIFF,DN1)
	15	IF(DELP.GT.DELPD(IQ))GO TO 52
	52 IF	IF(MODD.EQ.1)60 TO 65
	CO	TO 70
	53 IF	(TO.NE.1) GO TO 59
	DRI	I = AMAG(XRC, XRI)
	I F	IF (ABS(ORI-DN1).LT.1.) GO TO 54
	HDI	_
	DEL	DELPA = DEL (XRI, XRC, XBI, XR2, HDIFA, DRI)
	DEL	DELM= (DELPA + DELP)/2.
ပ	ICC	ICODE=107
ပ	M	WRITE(IDUT, 1000) ICODE, DFLP, DELPA
	IF.	IF((ABS(DELPA-DELP)-0.1-DELM/50.*(1.+DELM)).LE.0.) 30 TO 55
	CAL	CALL MIDP (XR1, XN1, XK)
U	ICI	ICODE=7
U	WP.1	WRITE(IOUT, 1000) ICODE, XRI, XK 170
	OFL	p = DELPA
	54 IF	IF (IEPS(XK, XRC, XB1, XB2, DELP). FO. 0) GO TO 58
	CALL	L MIDP (XRI,XK,XK)
C	IC	
ں	WRI	WRITE(IOUT, 1000) ICODE, XPI, XK
	69	50 TD 54
	55 DRK	DRK= AMAG (XRC, XK)
	18	(ABSIDRK-DNI).LT.1.) Gn Tn 58
	56 TF	IF(IEPS (XK, XRC, XB1, XR2, hELP).FO.O) GO TO S9
	CALL	L MIDD(XNI, XK, XK)
	n D	
	58 TF	IF (DELP.LE.DELPO(1)) 50 TO 52
		DELPO (10) = DELP
ပ	ICI	10.05 = 1.0
U	Law	WRITE(IDNT.1000) ICADE, DFI PO(1), DEL PO(2)
		The same of the sa

######################################	.5160 TO 65 D.NE.2160 TO 45 203 21 TO 71 CODE,XR2	- EFN SRURCE STATEMENT - TEN(S) -	214 ;DELP) ICODE,FB(1,1)	216) ICODE, XR1, XR2, XP2D -0.2)GO TO 78 TO 78	1.1.1GRA1.XG1) 1.2.1GRA1.XG2) 240 1.CODE.LOC.XG1.XG2
	MODD=1 CONTINUE IF(DELPO(2).LT.12.5)GD TO 6 ITRIG=1 IF(KCD.NE.3.DR.KCD.NE.2)GO CALL REPLCE(XR20,XR2) GO TO 66 CALL REPLCE(XK,XR2) IF(ITRIG.EO.1)GO TO 71 CONTINUE ICODE=11 WRITE(IOUT.1000)ICODE,XR2	N H H		ABSORPTION 73 KF=1,NF KF)=1. ITINUE 1000 1000 1000 1000 1000 1000 1000 10	KGCODE (1GRA) REPLCE(TA1) REPLCE(TA1) GT(1GRA) D= IKIN(1GRA) E=14 F(1011,1001)

	725	250	761	286	896				275	Charles and the state of the st	280		787					407									04/18/71		The second secon		The second secon	
IF(IERR.EQ.4) RFTURN IF(KIRIG.EQ.0) GO TO 77	74 CALL REPLCEIXR2,XK)	75 CALL NRI(XRI,XK,XRC,XNPT,DIST,XN1,DN1)	TELUNTEE OF UCATIVANNICO TO 77	XX • XRC • XG1 • XG	DL=1.57/(1./BG+1./AMAG(XG3,XG4))	λI=dd	IF(IK, EQ, 1) PP=5.	IF(IKIND.EQ.1) A=(.0016*PP-0.0028)*DL	IF(IKIND.EQ.2)A=2.**(PP/3.)/1310.*DL	IF(A.GT.3.)A=3.	FG(1K)=FG(1K)/10.**A	IF(FG(IK).LT.1.E-3)FG(IK)=1.E-3	CALL REPLCE(XK, XR2)	92		CONTINUE	78 CALL REPLCE(XR2,XR	C SECTION OF REPLECTORS	F	TENSOCIAL OF THE STATE OF THE S	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	NO AKE OF STREET	MADINE ACTIONS	VD01/11-DV(70AD 11	XDZ 1	•		GEDY - EFN SOURCE STATEMENT - TEN(S) -		NE MENSONI (TRANS)+1	UJ 85 ISEG=2, NLIM XR82(1) = BX [I 8AR, ISEG)	

CONTINUE CARRETE CARRET	27-	XRR2(3)=BY(IBAR, ISEG) XRR2(3)=BZ(IBAR, ISEG)	The second second	
1001) ICODE, KBAR, XR1, XR2, XR31, XR8? XRB1, XR82, XRC, XRCI) 1000) ICODE, XRR1, XNPTI 1000) ICODE, XRR1, XNPTI E(XRB1, XR2, XRCI) ANGIMG, DOST 1001) ICODE, XRR1, XRR2 XR1, XR2, XRCI, XRR1, XRR2 XR1, XR2, XRCI, XRR1, XRR2 XR1, XR2, XRCI, XRR1, XRR2 XR1, XR2, XR2 XR1, XR2, XR2 XR1, XR2, XR2 XR1, XR2, XR2 XR1, XR2, XR31 XR1, XR2, XR2, XR31 XR1, XR2, XR2, XR2, XR1, XR2 XR1, XR2, XR2, XR2, XR2, XR1, XR2, XR2, XR2, XR2, XR2, XR2, XR2, XR2		KBAR=KBAR+1 ICDDE=16		
RI, XR2, XRCI, XNPTI, DISTI) 1000) ICODE, XRCI, XNPTI E(XRB1, XRR2, XRCI) 4 MG, MG, ZDISTI/ANG/FR(1,1) 4 MG, MG, ZDISTI/ANG/FR(1,1) 4 MG, MG, ZDISTI/ANG/FR(1,1) 1001) ICODE, NRFDE; XRR1, XRR2 1001) ICODE, NRFDE; XRR1, XRR2 1001) ICODE, NRFE; XRR1, XRR2 1001) ICODE, NRFE; XRR1, XRR2 1001) ICODE, NRFE; XRR1) 1001) ICODE, NRFE; XRR1) 1001) ICODE, KRR1, XRR2, XR1, XRR2 1101) ICODE, KRR1, XRR2, XR1, XRR2 XRR1, XR2, XRC1, XRR1, XRR2, XR1, XR2, XR2, XR2, XR2, XR2, XR2, XR2, XR2		ECTOUT, 1001)	80	
100011CODE,XRCI,XNPTI E(XRB1,XRB2,XRCI) 0,11GD TD 80 0,11GD TD 80 1-1 E(XRB1,RB1(1,1,NREDE)) 100111CODE,NREDE,XRB1,XRB2 100111CODE,NREDE) 100111CODE,NREE) 100111CODE,NREE) 100111CODE,NREE) 100111CODE,NREE) 100111CODE,NREE) 100111CODE,NREE) 100111CODE,NREE 1 (XRB2,XRGI,XRB1) 100111CODE,NREE) 100111CODE,NREE 1 (XRB2,XRB1) 100111CODE,NREE 1 (XRB2,XRR1,XRB1) 100111CODE,NREA,XRB1) 100111CODE,NREA,XRB1,XRB1,XRB1,XRB2,XRZ,XRZ,XRZ,XRZ,XRZ,XRZ,XRZ,XRZ,XRZ,XRZ		NRPT (XR1, XR		
E(XRB1,XRB2,XQCI) 4. MAGIMGH/DISTI/ANG/FR(1,1) 0.11GD TO 80 (XRB1,RB1(1,1,NRFDF)) (XRB2,RB1(1,1,NRFDF)) (XRB1,RB1(1,1,NRFF)) (XRB1,RB1(1,1,NRFF)) (XRB2,RB1(1,1,NRFF)) (XRB2,RB1(1,1,NRFF)) (XRB2,RB1(1,1,NRFF)) (XRB2,RB1(1,1,NRFF)) (XRB2,RB1(1,1,NRFF)) (XRB2,RB1) (XRB2,RRB1) (XRB1,RRFF) (XRB1,RRFF) (XRB1,RRFF) (XRB1,RRFF) (XRB1,RRFF) (XRB1,RRFF) (XRB1,RRFF) (XRB1,RRFF) (XRB1,RRFF) (XRB1,RRB1,RRB1,RRB1,RRB1,RRB2,XR1,RRB2,RRB1,RRB1,RRB1,RRB1,RRB1,RRB1,RR	1	WRITE(13UT, 1000) ICODE, XRCI, XNPTI	320	
4 NGIMG)/DISTI/ANG/FR(1,1) 4 0.1150 TD 80 4.1 F)=KBAR (XRB1,RB1(1,1,NRFDF)) (XRB2,RB1(1,2,NRFDF)) (XR1,XR2,XRC1,XRR1,XRB2,XK,LUC))GU TO 80 XR1,XR2,XRC1,XRR1,XRB2,XK,LUC) (XRB1,R1(1,1,NRFF)) (XRB2,R1(1,1,NRFF)) (XRB2,RR1) (XRB2,RR1) (XRB2,RR1) (XRB2,RR1) (XRB1,RR1) (XRB1,RR1) (XRB1,RR1) (RI(1,2,KRF1,XRR1) (RI(1,2,KRF1,XRR1,XRR1,XRR1) (RI(1,2,KRF1,XRR1,XRR1,XRR1) (RI(1,2,KRF1,XRR1,XRR1,XRR1) (RI(1,2,KRF1,XRR1,XRR1,XRR1) (RI(1,2,KRF1,XRR1,XRR1,XRR1) (RI(1,2,KRF1,XRR1,XRR1) (RI(1,2,KRR1,XRR1,XRR1) (RI(1,2,KRR1,XRR1,XRR1) (RI(1,2,KR1,XRR1,XRR1) (RI(1,2,KR1,XRR1,XRR1) (RI(1,2,KR1,XRR1,XRR1) (RI(1,2,KR1,XRR1,XRR1) (RI(1,2,KR1,XRR1,XRR1) (RI(1,2,KR1,XRR1,XRR1,XRR1,XRR1,XRR1,XRR1,XRR1,		ANGI MG=ANGL E(XRB1, XRB2, XPCI)	322	
0.1)GD TD 80 (XRB1,RB1(1,1,NRFDF)) (XRB2,RB1(1,1,NRFDF)) (XRB2,RB1(1,2,NRFDF)) (XR1,XR2,XRC1,XRR1,XRB2,XK,LDC))=KRAR (XRB1,R1(1,1,NRFF)) (XRR2,R1(1,1,NRFF)) (XRR2,R1(1,1,NRFF)) (XRB2,XRA1) DO1)1CODF,NRFF,XRR1,XRR2 (XRB2,XRR1) (RR(1,1,KRFF) (RR(1,1		FCTR=(DIST*ANGIMG)/DISTI/ANG/FR(1,1)		
F)=KBAR (XRB1, RB1(1,1, NREDE)) (XRB2, RB1(1,2, NREDE)) 1001) ICODE, NRFDF, XRB1, XRB2 RJGO TO 80 NEW TO 80 NEW SP XRC(1, XRB1, XRB2, XK, LOC) NEW SP XR (1, 2, NREF)) (XRB1, RR (1, 2, NREF)) PROBLEM 0)GO TO 180 =1, NREF RKRFF) (R1(1, 2, KRFF), XRB1) (R1(1, 2, KRFF), XRB1) (R1(1, 2, KRFF), XRB1) (R1(1, 2, KRFF), XRB1, XRB2, XR1, XR2 XRB1, XRB2, XRC(1, XRB1, XRB1, XRB2) 1001) ICODE, KBAR1, XRB1, XRB1, XRB2, XR2 XRB1, XRB2, XRC(1, XRB1, XRB1, XRB1, XRB1, XRB2, XR2, XR2)		1)69 TO		
(XRB2,RB1(1,1,WRFDF)) (XRB2,RB1(1,2,WRFDF)) (XRB2,RB1(1,2,WRFDF)) (AB1,D1) ICODE, WRFDF, XRB2, XK,LDC) (ARB1,RR(1,1,WRFF)) (ARB2,RR1,RR1(1,1,WRFF)) (ARB2,RR1,RR1(1,1,WRFF)) (ARB2,RR1) (ARB1,RRFF) (ARB1,RR1,XR1) (ARB1,RR2,RR1) (ARB1,RR2,RR1,XR1) (ARB1,RR2,RR1) (ARB1,RR2)		NRF DF FNR FDF + 1		
(XRB2,RB1(1,2,NRFDF)) 1001)ICODE,NRFDF,XRB1,XRB2 R160 TO 80 XR1,XR2,XRC1,XRB1,XRB2,XK,LDC) 160 TO 80 1-KBAR (XRB1,R1(1,1,NRFF)) (XRB2,R1(1,2,NRFF)) 1001)ICODE,NRFF,XRB1,XRB2 (XRB2,XRB1) PROBLEW 0)60 TO 180 =1,NRFF R(KRFF) (R1(1,1,KRFF),XRB1) (R1(1,1,KRFF),XRB1) (R1(1,1,KRFF),XRB1) (R1(1,1,KRFF),XRR1) (R1(1,1,KRFF),XRR1) (R1(1,1,KRFF),XRR1) (R1(1,1,KRFF),XRR1) (R1(1,1,KRFF),XRR1) (R1(1,1,KRFF),XRR1)		CALL REPLETERATION 1. 1. NREDED	378	
1001)ICODE,NRFDE,XRB1,XRB2 RNGT TO 80 XR1,XR2,XRCI,XRB1,XRB2,XK,LDC))GO TO 80		ALL REPLCE(XRB2		
1001)1CODE,NREDE,XRRI,XRR2 R)GO TO 80 XRI,XR2,XRCI,XRRI,XRB2,XK,LUC))GO TO 80 = TO RO CONTROL TO RO CONTROL		CJDE=18		
RIGO TO 90 XRI, XR2, XRCI, XRRI, XRB2, XK, LDC) IGO TO 80 =KBAR (XRB1,RI(1,1, NREF)) (XRB2,RI(1,1, NREF)) IO01)ICODE, NREF, XRB1, XRB2 (XRB2, XRB1) PROBLEM 0)GO TO 180 =1, NREF R(KRF) (R1(1,1, KRFF), XRRI) (R1(1,1, KRFF), XRRI) (R1(1,1, KRFF), XRRI) (R1(1,2, KRFF), XRRI) XRB1, XRR2, XRC, XRR2, XR1, XR2 XRB1, XRR2, XRC, XRR1) XRB1, XRR2, XRC, XRR1, XRR2, XR, KTP(1,2, KRR2, XRC) XRB1, XRR2, XRC1, XRR1, XRR1, XRR1, XRR1, XRR2, XRC1, XRR1, XRC2, XRC1, XRR1, XRC2, XRC1, XR		WRITE(IOUT, 1001) ICODE, NRFDF, XRB1, XRR2	321	
XR1, XR2, XRCI, XRR1, XRB2, XK, LOC))GO TO 80 = KBAR (XRB1,RI(1,1,NREF)) (XRB2, XRB1) = 1001) I CODE, NRFF, XRB1, XRR2 (XRB2, XRB1) = 1,NRFF R(RFF), XRR1) (RI(1,1,KRFF), XRR1) (RI(1,1,KRFF), XRR1) (RI(1,2,KRFF), XRR1) XRB1, XRR2, XRCI) XRB1, XRR2, XRCI) XRB1, XRR2, XRCI, XRR1, XRR2, XR1, XRR2, XR1, XRR2, XRCI) XRB1, XRR2, XRCI)		IFIKAR.NE.IRIGO TO 80	And the state of t	
GO TO RO = KBAR (XRB1,RI(1,1,NREF)) (XRB2,RI(1,1,NREF)) 1001) ICODE,NREF,XRR1,XRR2 (XRB2,XRB1) OSG TO 180 = 1,NREF RI(1,1,KREF),XRR1) (RI(1,1,KREF),XRR1) (RI(1,1,2,KREF),XRR1) (RI(1,2,KREF),XRR1) (RI(1,2,KREF),XRR1)		CALL BLOCMIXRI, XR 2, XRCI, XRB1, XRB2, XK, LOC)	337	
= KBAR (XRB1,R1(1,1,NREF)) (XRB2,R1(1,2,NREF)) 1001)ICODE,NREF,XRB1,XRB2 (XRB2,XRB1) ONGO TO 190 = 1,NREF RIKREF) RIKREF) RIKREF 	160 TO			
= KBAR (XRB1,RI(1,1,NREF)) (XRB2,RI(1,2,NREF)) 1001)ICODE,NREF,XRB1,XRB2 (XRB2,XRB1) OSG TO 180 = 1,NREF (RI(1,1,KREF),XRB1) (RI(1,1,2,KREF),XRB1) (RI(1,1,2,KREF),XRB1) (RI(1,1,2,KREF),XRB1) (RI(1,2,KREF),XRB1) (RI(1		NREF=NRFF+1		
(XRB1,R1(1,1,NREF)) (XRB2,R1(1,2,NREF)) 1001)ICODE,NREF,XRB1,XRB2 (XRB2,XRB1) 0)GO TO 180 =1,NREF R(KREF) (R1(1,1,KREF),XRB1) (R1(1,1,2,KREF),XRB1) (R1(1,1,2,KREF),XRB1) XRB1,XRB2,XRC1,XRR1) XRB1,XRB2,XRC1,XRR1,XRB1,XRP1,XRP1) XRB1,XRB2,XRC1,XRR1,XRR1,XRR2,XK,KTP1C,1EPR)		MR(NREF)=KBI		
(XRR2,RI(1,2,NREF)) 1001)ICODE,NREF,XRR1,XRR2 (XRB2,XRR1) 0)GO TO 180 =1,NREF R(KREF) (R1(1,1,KREF),XRR1) (R1(1,1,KREF),XRR1) (R1(1,1,KREF),XRR1) XRR1,XRR2,XRC1) XRR1,XRR2,XRC1) XRR1,XR2,XRC1,XRR1,XRR2,XK,KTR1C,1EPR)		REPLCE (XRB1,R1(1	344	
1001)ICODE,NREF,XPB1,XRB2 (XRB2,XRB1) PROBLEM 0)GG TG 180 =1,NREF 8(KREF) (R1(1,1,KREF),XRB1) (R1(1,1,2,KREF),XRB1) (R1(1,2,KREF),XRB1) XRB1,XRB2,XRC,XRG1) XRB1,XRB2,XRC,XRG1)		REPLCE (XRR2		
1001)ICODE,NREF,XPR1,XRR2 [XRB2,XR91) DROBLEM 0)GO TO 180 =1,NREF B(KREF) [R1[1,1,KREF),XRR1) [R1[1,2,KREF),XRR1) [R1[1,2,KREF),XRR2) 1001)ICODE,KBAR1,XRR1,XRR2,XR1,XR2 XPR1,XRR2,XRC1) XR1,XR2,XRC1,XRR1,XRR1,XRR1,XRR2	- 1	1CJDE=19		
(XRB2, XRB1) PROBLEM O)GO TO 180 = 1, NREF R(RFF) (R1(1,1,KRFF), XRR1) (R1(1,2,KRFF), XRR1) (R1(1,2,KRFF), XRR1) (R1(1,2,KRFF), XRR1) XRR1, XRR2, XRR1, XRR2, XR1, XR2 XRR1, XR2, XRC1) XRR1, XR2, XRC1, XRR1, XRR2, XR, KTP1C, 1FPP)		WALTE (IDUT, 1001)	747	
DROBLEM 0)GO TO 190 =1.NREF R(KRFF) (R1(1,1,KRFF),XRR1) (R1(1,1,KRFF),XRR1) (R1(1,2,KRFF),XRR1) (R1(1,2,KRFF),XRR1) XRR1,XRR2,XR1) XRR1,XRR2,XRC1) XRR1,XR2,XRC1) XR1,XR2,XRC1,XRR1,XRR2,XK,KTR1C,1FRR)	or	CALL REPLCE (XRB2	250	
DROBLEM 0)GO TO 190 =1,NREF B(KRFE) (RI(1,1,KREF),XRRI) (RI(1,1,2,KREF),XRRI) (RI(1,2,KREF),XRRI) XRI(1,2,KREF),XRRI) XRI(1,2,KREF),XRRI) XRI(1,2,KREF),XRRI) XRI(1,2,KREF),XRRI) XRI(1,2,KREF),XRRI) XRI(1,2,KREF),XRRI) XRI(1,2,KREF),XRRI) XRI(1,2,KREF) XRI(1,2,KREF) XRI(1,2,KREF) XRI(1,2,KREF)				
I IDXR=0 IF(NRFF,EQ.0)GO TO 180 DO 175 KRFF=1,NRFF KRAR1=KRNUMB(KRFF) CALL REPLCE(RI(1,1,KRFF),XRR1) CALL REPLCE(RI(1,2,KRFF),XRR2) ICHDE=20 WRITE(INIT,1001)ICODE,KBAR1,XRR1,XR2 CALL IMAGE(XRR1,XR82,XRC1) CALL IMAGE(XRR1,XR82,XRC1) CALL IMAGE(XRR1,XR82,XRC1)	LL (
#EF.EU.DIGU ID 180 75	7	1 IDAKEU		
/5 KRFF=1,NREF 1=KRNUMB(KRFF) REPLCE(R1(1,1,KRFF),XRB1) REPLCE(R1(1,2,KRFF),XRB2) REPLCE(R1(1,2,KRFF),XRB2) E=20 IMAGE(XRB1,XRB2,KRBA1,XRB1,XRB2,XR1,XR2 IMAGE(XRB1,XRB2,XR1,XRB1) ENDPT(XR1,XR2,XRC1,XRR1)		- 1		
I=KRNUMKIRKEF) REPLCE(RI(1,1,KREF), XRR1) REPLCE(RI(1,2,KREF), XRR2) E=20 E(Inut, 1001) ICODE, KBAR1, XRR2, XR1, XR2 IMAGE(XRR1, XRB2, XRC, XRC1) ENDPT(XR1, XR2, XRC1, XRR1)		UN 175 KREFELL NREF		
REPLCE(RI(1,1,KRFF), XRB) REPLCE(R1(1,2,KRFF), XRB2) E=20 E(InUT, 1001) ICODE, KBAR1, XRB1, XRR2, XR1, XR2 IMAGE(XRB1, XR2, XRC, XRCT) ENDPT(XR1, XR2, XRCT)	-	DID OT STATE		
ICODE, KBARI, XRBI, XRB2, XR1, XR2 XRB2, XRC, XRCI) R2, XRCI, XPRI, XRR2, XK, KTRIC, IEPR)		ANDICE (ALLI	0.04	
ICODE,KBARI,XRAI,XRAZ,XR1,XR2 XRB2,XRC,XRCI) R2,XRCI,XPRI,XRR2,XK,KTRIG,IEPP)		ICODE=20		
XRB2,XRC,XRCI) R2,XRCI,XBRI,XRB2,XK,KTRIG,IERR)		ICODE, KBAR1, XRB1, XRB2, XR1	676	
ALL ENDDT(XR1, XR2, XRCI, XBR1, XRR2, XK, KTPIG, IFPR)	l	XRB2.XRC.XRCI)	277	
		ALL ENDDT(XR1,X	372	

Obe		3A2 3A4	888	04/18/71	700			404	410	415	
==21 (IDUT,1001) RIG-EQ-01GD	CALL NRICXFLXK2,XKCI,XNPTI,DISTI,XN11,DN1I) ICODE=22	WRITE(IOUT.1000)ICODE.XNPTI,XN1I XN1I(3)=XN1I(3)+ZS(2) HDTFF=HFIGHT(XN1I.XRCI.XRR1.XRR2)	160 TO	GEOM - EFN SOURCE STATEMENT - IFN(S) -	CALL SECTN(XRI, XR2, XRCI, XRBI, XRR2, XRB3, XRR4) ICODE=23 WRITE(IOUT, 1000) ICODE, XRI, XR2, XRR3, XRR4	MDIFF=0 00 95 IQ=1,NQ DFIPI(IQ)=-0.2	DELP2(IQ)=-0.2 95 CONTINUE DIFFRACTION BEFORE REFLECTION IE(NREDE_EQ_Q)GO TO 115 NO 110 KRFDF=1,NRFOF KBAR2=KRDNUM(KRFDF)	CALL REPLCE(RB1(1,1,KRFDF),XDR1) CALL REPLCE(RB1(1,2,KRFDF),XDB2)	ICODE=24 WRITE(ICOUT.1001)ICODE.KBAR2.XDR1.XDR2 IF(KBAR2.FO.KBAR1160 TO 110	XRB4. XRC 0 110 R2. XRC	
UU	U	U	1000		U U		C DIF		U U		טט

	17001-26	
	WRITE(IOUT, 1000) [CODE, XN] [427
	XN11(3)=ZN10+ZS(1)	
	HDIFF=HEIGHT(XN11.XRCT.XDB1.XDB2)	604
	DIFF.GT.20.	
	CALL SECTN(XRI,XX,XRCI,XDRI,XDR2,XDR3,XDR4)	
	E(10UT, 1000	623
	NRPT(XDB3,	435
	CALL NRI(XDB3, XDB4, XRCI, XNPTJ, DISTJ, XNZ, DNZ)	
	1CODE=127	
	WRITE(IDUT, 1000) ICODE, XNPTJ, XN2, DISTJ. DN2	437
	HOIFF=HEIGHT(XN2,XRCI,XRB1,XRB2)	
	1000 6 = 227	
	WRITE(IDUT, 1002) ICODE, HDIFF	627
	FE H0 FF.GT2.0 G0 Tn 170	
	DO 105 II=1+NQ	
	I 0-N0+I -II	
	XXII (3)=ZNI 0+ZS(10)	
	HDIFF=HEIGHT(XNII, XRCI, XD81, XDR2)	475
	DELP=DEL(XNII,XRCI,XDR1,XDR2,HDIFF,DNII)	
	WRITE(1007, 1002) I CODE, DELP	449
	IF(DELP.GE-12-5-AND.10-E0-2)60 TO 170	
	4	
	(10.	
	51 TO 105	
100	4DIFF=1	
	0ELP1(10)=DELP	
105	CONTINUE	
	GEDM - EFN SOURCE STATEMENT - TEN(S) - 04/18/71	
	10001	
	LOUIS THE TOO AT TOO AT TO A TOO AT TO A TO A TO	

110 CONTINUE

DIFFRACTION AFTER REFLECTION CALL IMAGE(XR91, XNPT), XNPTJ)	8 5 5
IMAGE(XRR1,XRB2,XR1,XR11) IMAGE(XRB1,XRR2,XR21) =30	0.27
WRITE(INUT,1000)ICODE,XP11,XR21,XNPT1 IF(NREDE,E0.0)Gn fn 145 Dn 140 krene=1,NREne KRAR2=KRONIM(KRENE)	477
REPLCE(RRI(1,1,KREDF),XDB1) REPLCE(RBI(1,2,KRFDF),XDB2) E=31	687
WRITE(IOUT, 1001) ICODE, KRAR 2, XDR 1, XDB 2 IF(KBAR 2, EQ, KRAR 1) GO TO 140	495
INTCPT(XRB1,XRB2,XRC,XRZI,XRB4) BLOCN(XRB3,XRB4,XRC,XDB1,XDB2,XJ,LOC)	067
IF(LDC.FQ.0)Gn Tn 140 IF(LDC.FQ.3)Gn Tn 120	
CALL INTOPT(XRII,XR2I,XPC,XJ,XKI) X <i(3)=zcor(xrii,xr2i,xki)< td=""><td>500</td></i(3)=zcor(xrii,xr2i,xki)<>	500
OFLTA=-0.5 CALL MOVE(XKI,XKI,XRII,DELTA,IFRP)	503
TF(IERR.EQ.4) RETURN TF(LOC.NE.1)GD TO 135	
TO 125 -L REPLIF(XR2I,XKI)	512
CALL INTEPT(XRII,XRC,XDRI,XDR2,XDR3)	
WRITE(INUT, 1001) ICODE, LOC, XJ, XKI, XDB3	514
-	5.5
HUIFF-GT2.0)GU TO 165	r
CALL NPI(XRIT, XKI, XPC, XNPTJ, NTSTI, XNII, DNII)	164
130 IT=1,N0 IO=N0+1-I	
XN11(3)=ZN10+7S(10) HDIFE=HFIGHT(XN11,XPC,XNR1,XNR2)	5.7

127		544	550	12/18/190	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			The state of the s						477	n .			, c	, and the second
<pre>IE(HDIFF.GT.20.0.AMD.IG.FD.2)G7 T7 140 DELP=DFL(XNII.XRC.XDRI.XDR2,HDIFF.DN1I) IF(MDIFF.EG.1.AND.DELP.GT7.2)G7 T7 165 IF(DFLP.LE.DFLP2(IQ))G7 T7 140</pre>	net Po(IQ)=nel P	I = COFLO2(2) GF.1			GEOM - FFN SOURCE STATEMENT - TEN(S) -	1DXR=1DXR+1	ICUL	F(DXR.LT.11)GD_TD_150	RETURN	150 DO 155 IQ=1,NO	DELKIIG <u>*ID</u> ARIEAMAAILUELPILIU?*DELYZIIU?! 155 CONTINUE	A - 1 = A - 1. I	F 05	155 CALL	C ISADE=35 C WAITE(IDIT 1000)1040F.X82	175 CONTINUE	C BEGIN BARPIEP EACTOR COMPUTATION	180 NIMG=INXº	ANG=ANGLE(XVI, XP7, XP7) ANGLE(XVI, XP7, XP7)

IF(KDOS(XNPT, XR2, XR1).E0.1)GO TO 190 ANG2=ANG1-ANG	, cor
60 10 195 ANG2=ANG1+ANG	
CONTRIBUTION FROM DIRECT PAY	
IF(NOS(MR, 10). FO.0)GD TO 205	
DO 200 KF=1.NF	
FB(KF,10)=RARFAC(KF,0ELP)	000
	X STATE OF THE STA
WAITE(IDUT, 1002) ICODE, FB(1, 10), FR(9, 10)	The state of the s
CONTRIBUTION FROM REFLECTIONS	S. Lady and A. Lady
IF(NIMG, EQ.0)GO TO 230	
DO 225 KIMG=1, NIMG	
0.0 1 2 1 0 1 = 1 0.3	
XRCI(I)=XIMG(I,KIMG)	
CONTINUE	
4.VJI = A VGLG (AK 19 AK 29 AK 21) CALL NODIL KOJ, KOJ, KOJ, KOJ, KOJ, KOJ, KOJ, KOJ,	813
RATIO=(ANGI/DISTI)/ANST	
00 220 IO=1, NO	
IF(NOS(MR, TO), EQ.0)GU TO 220	
JELP=DELR(TO,KTMG)	
D) 215 KF=1,NF	makes an automorphism of the control
FR(KF, IQ)=FR(KE, IO)+RARFAC(KF, NEL P)*PATIO	630
CONTINUE TODE-30	
WRITE(17UT, 1002) [CODE, FR(1,1), FR(1,2), FR(9,1), FR(0,2)	
GEDM - FFN SOUPCE STATEMENT - TENIS) -	04/19/71
THE TANK	
COMPUTE WEAN ENERGY LEVEL 230 CALL NR (KR) - KR2 - KRDT - DIST - VN - DN - 1	
00 232 Tally Ng	441

	547		į	¥	İ	į	i	TK.		1	į	
	548	1	1	*			700	701	707		İ	10
		i			To the second second second	1				li .		
	E .	!	1									
	ř.					i	1				8	
	6	The state of the s	i		1							
					to		1					
							- 1					
	i.						i		3	i		
		10 e e e e	8			i				i		19
				ì	Ì		1	1		1		8
								- 11				1
			10) * A*FR(1F, 10) *FG(1F)						1		E/	
			3) * F(235	ر ا				i		i	
		0	F, I	1	10 2	1					ic.	10 J +
	N 1	ט 240	F P ()		3				10 to 10 to		Tn 245	V
223	ING#dI##	0)GU T	***	-25 0	O I bee			1			0)60 1	1× + (0 I
7		0.0)		1.10)	H (C) I +		+ A DS				0.0	
	T D = 5	01.E	OCN 1 . I .	AND.	LACT) *T2		121	2)	44	00.	CON
(MR + 10 - 0) E 1 + 1 + 1 E 1 + 1 E E E E E E E E E	0.1)	10=1 MR, 1 (MR,	I=1.	FXPH T.6.	0)=X	D (TO	= X [F	CANG	LANG	= 2	TO=1, NO MR, TO).	T X P H
TE (NOQ. EQ. 0) GO DO 231 T=1,NOO XLA(I,ID)=0 CONTINUE CONTINUE DO 242 TE=1,NE 10-15	IF(IF.EO.1)IP=5 A=10.**(-1.E-8*4	DO 240 IO=1,NQ IF(NOS(WR,IO).EO. NOO=NOS(WR,IO)	T2=0. DO 235 I=1,N90 T3=XLREF(MR,I,IF	T2=T2+VFXPH(MR, I, IF(NF, GT, 6, AND, IF	IF(NF.LF. 5. AND. IF XLA(1,10)=XLA(1,1 CONTINHE	T1=T1+C0(10)*T2	CONTINUE	SA 2= SIN(ANG 1) SA 2= SIN(ANG 2) CA 1 = COS (ANG 1)	CA2=CDS(ANG2	- 1		T2=0. DO 244 I=1,NOQ T2-T2+VEXPH(MP,I,
4	TF(1F A=10. T1=0.	IF (1	T2=0 D0 2	T2=		1 1		SAZ	CA2	T1=0.	24c ru 2 ru 2 ru 2 ru 2 ru 2 ru	
232					46	240	242		8			244
		1		1							į	1

202		7.7.	7 0.1				li E	725	729	!	725	749	78.2
		£ = = = = = = = = = = = = = = = = = = =					741.8/71		E E				1
14421412		1/015T**IT3*[DQEV	SADACADA+TT3-CAIACAI+ATT3+T3+CDD EV)		ITCODE, XLF(1), XLF(9), CAP?		- EFN STATEMENT - JEN(S) -		*XR1*X210, DELIA, LERRA.	THIRN))).LT.1.016n TN 25	13,5F9,2/6F9,2) 13,14,4F9,2/6F9,2) 13,5E12,2)
T1=T1+(0(10) ** (N**2)*T2	245 CONTINUE IT3=2*N-1)= XK & (N) + T	CORFU=0.5/AFN*(244 CONTINUE	ANCI = ARC (ANG2)	10-10E=40	GENW	WRITE(INUT, 1000) ICONE, XR 2, XP 2G	DELTA=1. CALL MOVE(XP2.XI		WRITE(IDHT.1000) #500 FEIDSQR(XR2, XR2G).LT.	.	
	7.7			ر ر	U	ريا		U		J	C	24	C1000 C1001 C1002